Számítási eszköz

 

Calculation of saturation current for nanocrystalline ring cores

$$l_{Fe} = {{(d_a-d_i)\cdot 𝜋} \over 10 \cdot ln({{d_a} \over {d_i}})}$$
$$ A_{Fe}={{(d_a-d_i) \cdot h \cdot FF}\over200} $$
$$ µ_0=4 \cdot 𝜋 \cdot 10^{-6} $$
$$ A_L={{µ_0 \cdot µ_r \cdot A_{Fe}} \over l_{Fe}} $$
$$ I_{sat}={{B \cdot l_{fe}} \over (µ_0 \cdot µ_r \cdot N)} $$

Middle Pathlength

$$ m={{a_{Fe} \cdot (d_a + d_i) \cdot 𝜋 } \over {20 }} \cdot \rho $$

Definition of saturation current Isat of Nanoperm®: Peak value of the exiting current when the induction reaches B = 1,0 T @ µ_nom / N = 1. Saturation behaviour is very much depending on frequency, signal shape, leakage field, etc. so the mentioned current value is a calculated value for design help only and cannot be guaranteed.

Calculation of power loss for nanocrystalline ring cores

Results
$$ P_{Fe}(m)=P0 \cdot ({{F}\over{F0}})^x \cdot ({{f}\over{f0}})^y \cdot ({{B}\over{B0}})^z $$
$$ P_{Fe}={{P_{Fe(m)} \cdot Coreweight} \over 1000} $$

Constant values

*Nominal values, for information only